organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Carla Regina Andrighetti-Fröhner,^a Ricardo José Nunes,^a Luiz Everson da Silva,^b Cláudia Maria Oliveira Simões^c and Sabine Foro^d*

^aDepartamento de Química–UFSC, 88040-900 Florianópolis, SC, Brazil, ^bDepartamento de Química, Universidade Federal de Mato Grosso – UFMT – Cuiabá, MT, Brazil, ^cDepartamento de Ciências Farmacêuticas–UFSC, 88040-900 Florianópolis, SC, Brazil, and ^dClemens Schöpf-Institut für Organische Chemie und Biochemie, Technische, Universität Darmstadt, Petersenstrasse 22, D-64287 Darmstadt, Germany

Correspondence e-mail: foro@tu-darmstadt.de

Key indicators

Single-crystal X-ray study T = 299 KMean $\sigma(\text{C}-\text{C}) = 0.004 \text{ Å}$ R factor = 0.047 wR factor = 0.130 Data-to-parameter ratio = 11.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2007 International Union of Crystallography All rights reserved

Pyridinium 4-[(1*E*)-3-oxo-3-phenylprop-1-en-1-yl]benzenesulfonate

In the title compound, $C_5H_6N^+$ · $C_{15}H_{11}O_4S^-$, the C-C-C-C torsion angle of $-166.9 (2)^\circ$ between the 5-vinylbenzenesulfonate group and the phenyl ring indicates the nonplanarity of the system. The NH group of the pyridinium ring has an intermolecular contact with a sulfonyl O atom. Six intermolecular C-H···O hydrogen bonds are also observed in the crystal structure.

Received 26 March 2007 Accepted 4 June 2007

Comment

Chalcones are natural compounds of the flavonoid family. Chemically, they consist of open-chain flavonoids in which the two aromatic rings are joined by a three-carbon α,β -unsaturated carbonyl system. They exhibit biological activities, the most important being oestrogenic, antifungal, antinociceptive, antibacterial, antiviral and antiflammatory (Dimmock *et al.*, 1999). Their antifungal and antileishmanial activities suggest that the mode of action of some chalones is by inhibiting the activity of an enzyme that participates in the biosynthesis of ergosterol (Chan-Bacab & Pena-Rodriguez, 2001). We have investigated a series of novel synthetic chalcone derivatives for their trypanocidal and leishmanicidal properties (Lunardi *et al.*, 2003; Andrighetti-Fröhner *et al.*, 2003). In the light of this interest, we report here the crystal structure of the title compound, (I).

In (I), the 5-vinylbenzenesulfonate group is nearly planar, with a deviation from the mean plane of 0.112 (2) Å for C7 and -0.096 (2) Å for C8. The C7-C8-C9-C10 torsion angle of -166.9 (2)° between this group and the phenyl ring indicates the nonplanarity of the system. The C6-H6... O1^v=S1^v and C3-H3···O4^{vi}=C9^{vi} hydrogen bonds build bilayers of 4-[(1E)-3-oxo-3-phenylprop-1-en-1-yl]benzenesulfonate anions perpendicular to the *a* axis and connected by a layer of pyridinium cations by the hydrogen bonds N1- $H1N \cdots O3^{i} = S1^{i}$, $C16-H16\cdots O1^{ii}=S1^{ii}$ C20−H20··· $C17-H17\cdots O2^{iv}$ $S1^{iv}$ C19−H19··· $O1^{i} = S1^{i}$, and O2ⁱⁱⁱ=S1ⁱⁱⁱ. Details of the hydrogen bonding, including symmetry codes, are given in Table 1.

Experimental

The title compound (I) was prepared according to the literature procedure (da Silva et al., 2006). Single crystals of (I) suitable for X-ray data collection were obtained by recrystallization from a methanol-dichloromethane solution (1:1).

V = 1815.5 (4) Å³

Cu K α radiation

 $0.50 \times 0.40 \times 0.35 \text{ mm}$

3 standard reflections

frequency: 120 min intensity decay: 1.0%

2812 reflections with $I > 2\sigma(I)$

Only H-atom coordinates refined

 $\mu = 1.80 \text{ mm}^{-1}$

T = 299 (2) K

 $R_{\rm int} = 0.021$

287 parameters

 $\Delta \rho_{\rm max} = 0.63 \ {\rm e} \ {\rm \AA}^{-2}$ $\Delta \rho_{\rm min} = -0.33 \text{ e} \text{ Å}^{-3}$

Z = 4

Crystal data

 $C_5H_6N^+ \cdot C_{15}H_{11}O_4S^ M_{\rm m} = 367.41$ Monoclinic, $P2_1/c$ a = 17.034 (2) Å b = 9.0682 (9) Å c = 11.832 (2) Å $\beta = 96.61 \ (2)^{\circ}$

Data collection

Enraf-Nonius CAD-4 diffractometer Absorption correction: none 3698 measured reflections 3222 independent reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.047$ $wR(F^2) = 0.130$ S = 1.093222 reflections

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdot \cdot \cdot A$
N1-H1N···O3 ⁱ	0.97 (3)	1.86 (3)	2.790 (2)	159 (3)
C16-H16···O1 ⁱⁱ	0.88 (3)	2.44 (3)	3.260 (3)	156 (2)
C19−H19···O1 ⁱⁱⁱ	0.95 (3)	2.42 (3)	3.324 (3)	161 (2)
$C17-H17\cdots O2^{iv}$	1.00 (3)	2.48 (3)	3.224 (3)	132 (2)
$C20-H20\cdots O2^{i}$	0.92 (3)	2.52 (3)	3.251 (3)	136 (2)
$C6-H6\cdots O1^{v}$	0.93 (3)	2.40 (3)	3.303 (3)	164 (2)
$C3\!-\!H3\!\cdots\!O4^{vi}$	0.93 (3)	2.42 (3)	3.275 (3)	152 (2)
Symmetry codes:	(i) $x - 1, -y$	$+\frac{1}{2}, z + \frac{1}{2};$ (ii) $-x+1, y-\frac{1}{2}$	$-z + \frac{3}{2};$ (iii)
$-x + 1, y + \frac{1}{2}, -z + \frac{1}{2};$	(1V) -x +	-1, -y, -z + 1;	(v) $x, -y +$	$\frac{1}{2}, z - \frac{1}{2};$ (V1)

-x+1, -y+1, -z+1

H atoms were located in difference maps and their positions refined [C-H = 0.87 (3)-1.01 (4) Å, N-H = 0.97 (3) Å), with $U_{\rm iso}({\rm H}) = 1.2U_{\rm eq}({\rm parent atom})].$

Data collection: CAD-4-PC (Enraf-Nonius, 1996); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

The authors thank Professor Dr Hartmut Fuess, Technische Universität Darmstadt, for diffractometer time.

Figure 1

The molecular structure of (I), with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

The molecular packing of (I), with hydrogen bonding shown as dashed lines. [Symmetry codes: (b) $x - 1, -y + \frac{1}{2}, z + \frac{1}{2}$; (c) -x + 1, -y + 1, -z + 1; (d) $x, -y + \frac{1}{2}, z - \frac{1}{2};$ (e) -x + 1, -y, -z + 1.]

References

Andrighetti-Fröhner, C. R., Antonio, R. V., Creczynski-Pasa, T. B., Barardi, C. R. & Simões, C. M. O. (2003). Mem. Inst. Oswaldo Cruz, 98, 843-848.

Chan-Bacab, M. J. & Pena-Rodriguez, L. M. (2001). Nat. Prod. Rep. 18, 674-688

- Dimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125-1149.
- Enraf-Nonius (1996). CAD-4-PC. Version 1.2. Enraf-Nonius, Delft, The Netherlands.
- Lunardi, F., Guzela, M., Rodriguez, A. T., Corrêa, R., Eger-Mangrich, I., Steindel, M., Grisard, E. C., Assreuy, J., Calixto, J. B. & Santos, A. (2003). Antimicrob. Agents Chemother. 47, 1449-1451.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Silva, L. E. da, Andrighetti-Fröhner, C. R., Nunes, R. J., Simões, C. M. O. & Foro, S. (2006). Acta Cryst. E62, o2104-o2105.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Stoe & Cie (1987). REDU4. Version 6.2c. Stoe & Cie GmbH, Darmstadt, Germany.